Sunday, April 26, 2020

How To Start PHP And MYSQL | The Best Server For PHP And MYSQL | Tutorial 1


Many of people want to start PHP programming embedded with MYSQL databases concepts. So i thought that I should start a series about PHP and MYSQL. So in this series of video tutorials you exactly got the content about PHP and MYSQL.

As PHP is server side scripting language. So it requires a server to get execute over the web browser. First of all you have to download and install a server that may be XAMPP, WAMPP or LAMPP. I'm using XAMPP server in the tutorials. So if you wanna follow me then download a XAMPP server. I'm using this because it has a good interface to work  and it's really simple. XAMPP is compatible with windows, MAC and Linux operating as well. WAMPP is only for windows and LAMPP is used for MAC and Linux operating system. So i prefer XAMPP for this series.

How to create Database

Step 1:

Open Your XAMPP control panel and start Apache and Mysql services.

Step 2:

Go to your Web browser and type "localhost/phpmyadmin". It will open your databases area. If you have an error then your services are not in running state. If you have any error then comment below.

Step 3:

Click over the "new" to create a new database.

Step 4:

Write Database_Name and click over the Create button. For example Facebook, Students etc.

Step 5:

Write Table_Name like admin, users etc. your can increase and decrease the size of rows. Click over Save/Create button.

Step 6:

Write your Attribute_Names in first column like Username, Email, Passwords etc. In the next data type column you have to select the data type whether it is integer or string type etc. In the next column you have to set the length of string/words.

Step 7:

If you wanna go through with a Primary_Key. Then just you have to checked the Auto_Increment box as you will shown in the video. For further watch the video for better understanding. 



The code:

More articles


  1. Hacking Wikipedia
  2. Hacking Team
  3. Hacking 101

Thursday, April 23, 2020

Arris Cable Modem Backdoor - I'm A Technician, Trust Me.

Vendor backdoors are the worst. Sloppy coding leading to unintentional "bugdoors" is somewhat defendable, but flat out backdoors are always unacceptable. Todays example is brought to you by Arris. A great quote from their site -
Subscribers want their internet to be two things, fast and worry free. Cable operators deploy services to meet the speed expectations, and trust ARRIS to provide the cable modems that deliver the reliability.
Nothing spells "trust" and "worry free" like a backdoor account, right?! Anyways, the following was observed on an Arris TG862G cable modem running the following firmware version -TS070563_092012_MODEL_862_GW

After successfully providing the correct login and password to the modems administration page, the following cookie is set (client side):
Cookie: credential=eyJ2YWxpZCI6dHJ1ZSwidGVjaG5pY2lhbiI6ZmFsc2UsImNyZWRlbnRpYWwiOiJZV1J0YVc0NmNHRnpjM2R2Y21RPSIsInByaW1hcnlPbmx5IjpmYWxzZSwiYWNjZXNzIjp7IkFMTCI6dHJ1ZX0sIm5hbWUiOiJhZG1pbiJ9
 All requests must have a valid "credential" cookie set (this was not the case in a previous FW release - whoops) if the cookie is not present the modem will reply with "PLEASE LOGIN". The cookie value is just a base64 encoded json object:
{"valid":true,"technician":false,"credential":"YWRtaW46cGFzc3dvcmQ=","primaryOnly":false,"access":{"ALL":true},"name":"admin"}
And after base64 decoding the "credential" value we get:
{"valid":true,"technician":false,"credential":"admin:password","primaryOnly":false,"access":{"ALL":true},"name":"admin"}
Sweet, the device is sending your credentials on every authenticated request (without HTTPS), essentially they have created basic-auth 2.0 - As the kids say "YOLO". The part that stuck out to me is the "technician" value that is set to "false" - swapping it to "true" didn't do anything exciting, but after messing around a bit I found that the following worked wonderfully:
Cookie: credential=eyJjcmVkZW50aWFsIjoiZEdWamFHNXBZMmxoYmpvPSJ9
Which decodes to the following:
{"credential":"dGVjaG5pY2lhbjo="}
And finally:
{"credential":"technician:"} 
Awesome, the username is "technician" and the password is empty. Trying to log into the interface using these credentials does not work :(




That is fairly odd. I can't think of a reasonable reason for a hidden account that is unable to log into the UI. So what exactly can you do with this account? Well, the web application is basically a html/js wrapper to some CGI that gets/sets SNMP values on the modem. It is worth noting that on previous FW revisions the CGI calls did NOT require any authentication and could be called without providing a valid "credential" cookie. That bug was killed a few years ago at HOPE 9.

Now we can resurrect the ability to set/get SNMP values by setting our "technician" account:


That's neat, but we would much rather be using the a fancy "web 2.0" UI that a normal user is accustomed to, instead of manually setting SNMP values like some sort of neckbearded unix admin. Taking a look at the password change functionality appeared to be a dead end as it requires the previous password to set a new one:


Surprisingly the application does check the value of the old password too! Back to digging around the following was observed in the "mib.js" file:
SysCfg.AdminPassword= new Scalar("AdminPassword","1.3.6.1.4.1.4115.1.20.1.1.5.1",4);
Appears that the OID "1.3.6.1.4.1.4115.1.20.1.1.5.1" holds the value of the "Admin" password! Using the "technician" account to get/walk this OID comes up with nothing:
HTTP/1.1 200 OK
Date: Tue, 23 Sep 2014 19:58:40 GMT
Server: lighttpd/1.4.26-devel-5842M
Content-Length: 55
{
"1.3.6.1.4.1.4115.1.20.1.1.5.1.0":"",
"1":"Finish"
}
What about setting a new value? Surely that will not work....



That response looks hopeful. We can now log in with the password "krad_password" for the "admin" user:


This functionality can be wrapped up in the following curl command:
curl -isk -X 'GET' -b 'credential=eyJjcmVkZW50aWFsIjoiZEdWamFHNXBZMmxoYmpvPSJ9' 'http://192.168.100.1:8080/snmpSet?oid=1.3.6.1.4.1.4115.1.20.1.1.5.1.0=krad_password;4;'
Of course if you change the password you wouldn't be very sneaky, a better approach would be re-configuring the modems DNS settings perhaps? It's also worth noting that the SNMP set/get is CSRF'able if you were to catch a user who had recently logged into their modem.

The real pain here is that Arris keeps their FW locked up tightly and only allows Cable operators to download revisions/fixes/updates, so you are at the mercy of your Cable operator, even if Arris decides that its worth the time and effort to patch this bug backdoor - you as the end user CANNOT update your device because the interface doesn't provide that functionality to you! Next level engineering.


More information


DEFINATION OF HACKING

DEFINATION OF HACKING

Hacking is an attempt to exploit a  computer system vulnerabilities or a private network inside a computer to gain unauthorized acess.
Hacking is identifying and exploiting weakness in computer system and/ or computer networks for finding the vulnerability and loopholes.
More info

Scanning For Padding Oracles

As you might have heard, we recently got our paper on padding oracle attacks accepted to the USENIX Security Conference. In this paper, we describe and evaluate a scanning methodology with which we found several padding oracle vulnerabilities in devices from various vendors. In total, we found that 1.83% of the Alexa Top 1 Million have padding oracle vulnerabilities.

To test whether a server is vulnerable, we specified different padding oracle vectors which we send to the system under test, using different cipher suites and protocol versions. If the server does not behave identically (on both the TLS and TCP layers), we consider it to be vulnerable to a padding oracle attack, since it is leaking information about the plaintext via behavior differences. Depending on the responses to such padding oracle vectors, one can estimate which implementation is responsible for the vulnerability. We contacted quite a few website owners and tried to cooperate with them, to find out which vendors and TLS stacks are responsible for the identified vulnerabilities. You can find our current disclosure status on this issue on https://github.com/RUB-NDS/TLS-Padding-Oracles.
We are currently in contact with other vendors to fix the remaining vulnerabilities, but the some of the rare (in terms of the number of affected hosts) vulnerabilities are currently not attributed. To fix the remaining vulnerabilities, we ask for your assistance to help get rid of this issue. For this purpose, we integrated a standalone version of our padding oracle evaluation tool into our TLS-Scanner (v.2.7) project. This tool allows you (among other things) to evaluate if a specific server is vulnerable.

When the tool detects a vulnerability, it tries to attribute the vulnerability to a specific vendor or CVE. If we already know of the vulnerability of the server you scanned, the tool will print its details. If the tool does not have a description of the vulnerability in its database, it will ask you to notify us about the vulnerable server, such that we can notify the vendor and get the device fixed. To be clear: the tool never sends any data to us - you have the choice of whether to notify us (and what details to include). There is a chance that the tool's attribution is also mistaken, that is, the tool lists a vendor for your host, but you know for sure that you do not use an implementation by this vendor. Please contact us in such cases as well.

How to use the Tool

First, you need to grab hold of the tool. There are 3 ways to get your hands dirty: pre-compiled, self-compiled or Docker. We provide a pre-compiled version of the tool since the compilation process can get quite messy if you are not familiar with java and maven. You can directly download the resulting project here. However, if you also want to play around with the code, you have to compile everything yourself.

Building the TLS-Scanner

For this, you will need (Git), maven (sudo apt-get install maven), OpenJDK-8  (I can guarantee that this version works, other versions might work as well, have not tested it).

You will need to get TLS-Attacker 2.9 (if you do not already have it):
Now we can clone and install the TLS-Scanner

Docker

We also provide a Dockerfile, which lets you run the scanner directly

Getting Started


If you start the TLS-Scanner you should be greeted by a usage info, similar to the one below:

 or


This should give you an overview of the supported command line flags. The only really required one is the -connect flag (similar to OpenSSL and TLS-Attacker), with which you specify which host to scan. The most basic command is therefore:

Your output may look something like this:

By default, TLS-Scanner will run single-threaded. In such cases the scanning will take a while; just how long it will take depends on your server configuration. The scanner also supports multi-threading, which drastically improves the performance. There are two parameters to play around with, -threads, which controls how many different "probes" are executed in parallel, and -aggressive , which controls how many handshakes can be executed simultaneously. If you want the fastest results the following parameters are usually a good choice:

But lets get back to the results of the Scanner. Currently the Scanner supports a bunch of well known tests, like supported ciphersuites or protocol versions. These are very similar to what you may be used to from other scanners like ssllabs or testssl.sh.

Padding Oracles

The main advantage of our scanner is the ability to scan for padding oracle vulnerabilities (which is probably why you are reading this post). You will see if you are vulnerable in the "Attack Vulnerabilities" section. For example, when scanning hackmanit.de, the result is false. Good for us! But as you might have seen there is also another section in the scanner report:"PaddingOracle Responsemap"
This section lists the responses of the scanned host for each padding oracle vector, for each cipher suite and protocol version. For hackmanit.de, there is no detected difference in responses, which means hackmanit.de is not vulnerable to the attack:
If we want, we can also look at the concrete responses of the server. For this purpose, we start the scanner with the -reportDetail flag:

With this flag we now get the following details:

So what does this all mean? First of all, we named our malformed records. The interpretation of those names is visualized in the following table:
BasicMac-<position>-<XOR>  A Record with ApplicationData, MAC and padding bytes, where the padding byte at <position> is XOR'd <XOR>
 MissingMacByteFirst A Record without ApplicationData, where the first byte of the MAC is missing
 MissingMacByteLast A Record without ApplicationData, where the last byte of the MAC is missing
 Plain FF A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xFF 
 Plain 3F A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xF3
 InvPadValMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and valid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The Padding is invalid at <position>.
 ValPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with valid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at <position>.
 InvPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at the first position. The Padding is invalid at <position>.

Next to the name you can see what the actual response from the server was. Alert messages which are in [] brackets indicate that the alert was a fatal alert while () brackets indicate a warning alert. ENC means that the messages were encrypted (which is not always the case). The last symbol in each line indicates the state of the socket. An X represents a closed socket with a TCP FIN, a T indicates that the socket was still open at the time of measurement and an @ indicates that the socket was closed with an RST. So how did Hackmanit respond? We see a [BAD_RECORD_MAC]  ENC X, which means we received an ENCrypted FATAL BAD_RECORD_MAC alert, and the TCP connection was closed with a TCP FIN. If a server appears to be vulnerable, the scanner will execute the scan a total of three times to confirm the vulnerability. Since this response is identical to all our vectors, we know that the server was not vulnerable and the scanner is not re-executing the workflows.

Here is an example of a vulnerable host:
As you can see, this time the workflows got executed multiple times, and the scanner reports the cipher suite and version as vulnerable because of "SOCKET_STATE". This means that in some cases the socket state revealed information about the plaintext. If you look closely, you can see that for ValPadInvMac-[0]-0-59, ValPadInvMac-[8]-0-59 and ValPadInvMac-[15]-0-59 the server failed to close the TCP socket, while for all other vectors the TCP connect was closed with a TCP FIN. The server was therefore vulnerable.

Since the server was vulnerable, TLS-Scanner will also print an additional section: "PaddingOracle Details"

In this section we try to identify the vulnerability. In the example above, TLS-Scanner will print the following:

As you can see, we attribute this vulnerability to OpenSSL <1.0.2r. We do so by looking at the exact responses to our malformed records. We additionally print two important facts about the vulnerability: Whether it is observable and its strength. The precise details of these properties are beyond the scope of this blogpost, but the short version is:
If an oracle is observable, a man in the middle attacker can see the differences between the vectors by passively observing the traffic, without relying on browser or application specific tricks. A strong oracle has no limitations in the number of consecutive bytes an attacker can decrypt. If an oracle is STRONG and OBSERVABLE, then an attacker can realistically exploit it. This is the case in the example above.
For more details on this, you will have to wait for the paper.

Attribution

As you can see, we try to fingerprint the responsible device/implementation. However, we were not able to identify all vulnerable implementations yet. If we cannot attribute a vulnerability you will receive the following message:

Could not identify the vulnerability. Please contact us if you know which software/hardware is generating this behavior.

If you encounter this message, we do not know yet who is responsible for this padding oracle and would be happy to know which device/vendor is responsible. If you know who is, please contact us so that we can get in contact with the vendor to fix the issue. To reiterate, the tool never sends any data back to us, and it is your choice whether to contact us manually or not.

There are also some cases in which we can identify the vendor, but the vendor has not patched the vulnerability yet. If you encounter such a host, the scanner will tell you that we know the responsible vendor. To prevent abuse, we do not include further details.

Non-Determinism and Errors

In some cases, the scanner is unable to scan for padding oracles and reports ERROR or non-deterministic responses. The ERROR cases appear if the scanner failed could not handshake with the specified cipher suite and protocol version. This might be due to a bug in the tested TLS-Server or a bug in TLS-Attacker or TLS-Scanner. If you think the handshake fails because of an issue on our side, please open an issue on Github, and we will investigate. The more interesting cases are the non-deterministic ones. In such cases the scanner observed non-identical scan results in three separate scans. This can be due to non-determinism in the software, connection errors, server load or non-homogeneous load balancing. Currently, you will have to analyze these cases manually. In the paper, we excluded such hosts from our study because we did not want to artificially improve our results. But we understand that you as a tester want to know if the server is vulnerable or not. If the server is not truly vulnerable you would see the differences between the answers spread across all the different vectors. If the differences only appear on a subset of malformed records the server is very likely vulnerable. If you are unsure, you can also always scan multiple times (or scan slowly), increase the timeout, or if you are entirely lost get in touch with us. 


How YOU can help

Please use the scanner on all your hosts and check for padding oracle vulnerabilities. If the scanner can identify your vulnerability, a patch should already be available. Please patch your system! If the scanner does not identify the vulnerability (and instructs you to contact us), please contact us with the details (robert.merget@rub.de). If you can provide us with the detailed output of the scanner or even better, the name of the host, with the corresponding vendor, we could match the results with our database and help fix the issue. We can already attribute over 90% of the vulnerabilities, but there is still a lot to be discovered. We mostly scanned the Alexa top 1-million on port 443. Other protocols like IMAPS, POP3S, etc. might have different implementations with different vulnerabilities. If you find vulnerabilities with our tool, please give us credit. It helps us to get more funding for our project.

Issues with the Scanner


A notable feature of our scanner is that we do not actively try to avoid intolerances (like not scanning with a lot of cipher suites in the Hello messages etc.). We believe that doing so would hide important bugs. We are currently experimenting with intolerances checks, but the feature is now still in beta. If we cannot scan a server (most of the time due to intolerances or SNI problems), the scanner will report a lot of intolerances and usually no supported protocol versions. Some intolerances may trick the scanner into reporting false results. At the current stage, we cannot make any guarantees. If you are using this tool during a pentest, it might be smart to rescan with other scanners (like the recently released padcheck tool from our colleague Craig Young) to find the ground truth (this is good advice in general, since other mainstream scanners likely have the same issues). Note however that it is very unlikely that the scanner reports a false positive on a padding oracle scan.


Conclusion

There are still a lot of padding oracle vulnerabilities out there - and a lot of them are still unpatched. We hope you will find some bugs with the tool :) Happy H4cking :D


Acknowlegements

This is joint work from Robert Merget (@ic0nz1), Juraj Somorovsky (@jurajsomorovsky),  Nimrod Aviram (@NimrodAviram), Janis Fliegenschmidt (@JanisFliegens), Craig Young (@craigtweets), Jörg Schwenk (@JoergSchwenk) and (Yuval Shavitt).

Related posts


Wednesday, April 22, 2020

COVID-Themed Lures Target SCADA Sectors With Data Stealing Malware

A new malware campaign has been found using coronavirus-themed lures to strike government and energy sectors in Azerbaijan with remote access trojans (RAT) capable of exfiltrating sensitive documents, keystrokes, passwords, and even images from the webcam. The targeted attacks employ Microsoft Word documents as droppers to deploy a previously unknown Python-based RAT dubbed "PoetRAT" due to

via The Hacker NewsRead more
  1. Hacking System
  2. Phishing Hacking
  3. Curso Ethical Hacking
  4. Live Hacking
  5. Libro De Hacking
  6. Que Significa Hat
  7. Linux Hacking
  8. Drupal Hacking
  9. Live Hacking
  10. Elladodelmal

DOWNLOAD NANOCORE RAT 1.2.2.0 CRACKED – REMOTE ADMINISTRATION TOOL

NanoCore is one of the most powerful RATs ever created. It is capable of taking complete control of a victim's machine. It allows a user to control the system with a Graphical User Interface (GUI). It has many features which allow a user to access remote computer as an administrator. Download nanocore rat 1.2.2.0 cracked version free of cost.
NanoCore's developer was arrested by FBI and pleaded guilty in 2017 for developing such a malicious privacy threat, and sentenced 33 months in prison.

FEATURES

  • Complete Stealth Remote Control
  • Recover Passwords from the Victim Device
  • Manage Networks
  • Manage Files
  • Surveillance
  • Plugins (To take it to the next level)
  • Many advanced features like SCRIPTING

DOWNLOAD NANOCORE RAT 1.2.2.0 CRACKED – REMOTE ADMINISTRATION TOOL

Related posts
  1. Linux Hacking
  2. Hardware Hacking Tools
  3. Viral Hacking
  4. Hacking With Swift
  5. Hacking Etico
  6. Herramientas Hacking
  7. Escuela De Hacking
  8. Hacking Informatico

Monday, April 20, 2020

Blockchain Exploitation Labs - Part 2 Hacking Blockchain Authorization


Bypassing Blockchain Authorization via Unsecured Functions


Note: Since the first part of this series I have also uploaded some further videos on remediation of reentrancy and dealing with compiler versions when working with this hacking blockchain series.  Head to the console cowboys YouTube account to check those out.  Haha as mentioned before I always forget to post blogs when I get excited making videos and just move on to my next project… So make sure to subscribe to the YouTube if you are waiting for any continuation of a video series.. It may show up there way before here. 

Note 2:  You WILL run into issues when dealing with Ethereum hacking, and you will have to google them as versions and functionality changes often... Be cognizant of versions used hopefully you will not run into to many hard to fix issues. 

In the second part of this lab series we are going to take a look at privacy issues on the blockchain which can result in a vulnerably a traditional system may  not face. Since typically blockchain projects are open source and also sometimes viewable within blockchain explorers but traditional application business logic is not usually available to us. With traditional applications we might not find these issues due to lack of knowledge of internal functionality or inability to read private values on a remote server side script.  After we review some issues we are going to exploit an authorization issues by writing web3.js code to directly bypass vertical authorization restrictions.

Blockchain projects are usually open source projects which allow you to browse their code and see what's going on under the hood.  This is fantastic for a lot of reasons but a developer can run into trouble with this if bad business logic decisions are deployed to the immutable blockchain.  In the first part of this series I mentioned that all uploaded code on the blockchain is immutable. Meaning that if you find a vulnerability it cannot be patched. So let's think about things that can go wrong..

A few things that can go wrong:
  • Randomization functions that use values we can predict if we know the algorithm
  • Hard-coded values such as passwords and private variables you can't change.
  • Publicly called functions which offer hidden functionality
  • Race conditions based on how requirements are calculated

Since this will be rather technical, require some setup and a lot of moving parts we will follow this blog via the video series below posting videos for relevant sections with a brief description of each.  I posted these a little bit ago but have not gotten a chance to post the blog associated with it.  Also note this series is turning into a full lab based blockchain exploitation course so keep a lookout for that.

In this first video you will see how data about your project is readily available on the blockchain in multiple formats for example:
  • ABI data that allows you to interact with methods.
  • Actual application code.
  • Byte code and assembly code.
  • Contract addresses and other data.

 Lab Video Part 1: Blockchain OSINT: 



Once you have the data you need to interact with a contract on the blockchain via some OSINT how do you actually interface with it? That's the question we are going to answer in this second video. We will take the ABI contract array and use it to interact with methods on the blockchain via Web3.js and then show how this correlates to its usage in an HTML file

Lab Video Part 2: Connecting to a Smart Contract: 




Time to Exploit an Application:

Exploit lab time, I created an vulnerable application you can use to follow along in the next video. Lab files can be downloaded from the same location as the last blog located below. Grab the AuthorizationLab.zip file:

Lab file downloads:



Ok so you can see what's running on the blockchain, you can connect to it, now what?   Now we need to find a vulnerability and show how to exploit it. Since we are talking about privacy in this blog and using it to bypass issues. Lets take a look at a simple authorization bypass we can exploit by viewing an authorization coding error and taking advantage of it to bypass restrictions set in the Smart Contract.  You will also learn how to setup a local blockchain for testing purposes and you can download a hackable application to follow along with the exercises in the video..

Lab Video Part 3:  Finding and hacking a Smart Contract Authorization Issue: 





Summary:

In this part of the series you learned a lot, you learned how to transfer your OSINT skills to the blockchain. Leverage the information found to connect to that Smart Contract. You also learned how to interact with methods and search for issues that you can exploit. Finally you used your browsers developer console as a means to attack the blockchain application for privilege escalation.

Related word


C++ Std::Condition_Variable Null Pointer Derreference


This story is about a bug generated by g++ and clang compilers (at least)
The condition_variables is a feature on the standard library of c++ (libstdc++), when its compiled statically a weird asm code is generated.


Any example on the link below will crash if its compiled statically:
 https://en.cppreference.com/w/cpp/thread/condition_variable



In this case the condition_variable.wait() crashed, but this happens with other methods, a simple way to trigger it:




If this program is compiled dynamically the crash doesn't occur:

Looking the dissasembly there is a surprise created by the compiler:


Compilers:
    g++  9.2.1+20200130-2
    clang++ v9

Both compilers are generating the "call 0x00"

If we check this call in a dynamic compiled:




The implementation of condition_variable in github:
https://github.com/gcc-mirror/gcc/blob/b7c9bd36eaacac42631b882dc67a6f0db94de21c/libstdc%2B%2B-v3/include/std/condition_variable


The compilers can't copile well this code in static,  and same happens on  other condition_variable methods.
I would say the _lock is being assembled improperly in static, is not exacly a null pointer derreference but the effects are the same, executing code at address 0x00 which on linux is a crash on most of cases.

Related articles


Why SaaS Opens The Door To So Many Cyber Threats (And How To Make It Safer)

Cloud services have become increasingly important to many companies' daily operations, and the rapid adoption of web apps has allowed businesses to continue operating with limited productivity hiccups, even as global coronavirus restrictions have forced much of the world to work from home. But at the same time, even major corporations have fallen prey to hackers. How can you maintain the

via The Hacker NewsContinue reading
  1. Hacking Tools Online
  2. Pentest Tools Alternative
  3. Hacking Tools Download
  4. Pentest Reporting Tools
  5. Hacking Tools For Windows
  6. Hacker Tools Software
  7. Hacker Tools
  8. How To Make Hacking Tools
  9. How To Install Pentest Tools In Ubuntu
  10. Hackers Toolbox
  11. Hacker Tools For Pc
  12. How To Hack
  13. Pentest Tools Website Vulnerability
  14. Pentest Tools Subdomain
  15. Pentest Tools For Android
  16. Pentest Tools For Android
  17. Hacking Tools For Games
  18. Hackers Toolbox
  19. Hacking Tools Hardware